
A System for Automatic Testing of Embedded
Software in Undergraduate Study Exercises

Voin Legourski, Christian Trödhandl, and Bettina Weiss
Vienna University of Technology,

Embedded Computing Systems Group E182-2,
Treitlstr. 3/2, 1040 Vienna, Austria

Email: legourski@yahoo.com, {troedhandl,bw}@ecs.tuwien.ac.at

Abstract— As student numbers in embedded systems lab
courses increase, it becomes more and more time-consuming to
verify the correctness of their homework and exam programs.
Automatic verification can vastly improve the speed and quality
of such tests. This paper describes a system that can carry out
black-box tests to verify whether the embedded software running
on a target system meets predefined requirements. To this aim, we
employ a special test board using an ATmega128 microcontroller
which is connected to both the target system and to a host
computer. Tests can be selected and started remotely, the results
are presented to the user on the host. Monitoring and control via
Internet is also easily possible. A special meta-language is used
to describe the correct behavior of the tested program, and this
description is compiled and downloaded to the test system via a
standard RS-232 interface, where the test is executed. The same
interface is used to control the tests and for transfer of data and
end results.

Index Terms—embedded software education, automatic testing,
black-box testing

I. INTRODUCTION

Laboratory courses in embedded systems programming are
characterized by tight resource constraints and a significant
expenditure of time and effort per student. One of the major
factors contributing to the time expenditure is the verification
of student programs, be they homework or exam solutions.
To facilitate this work, we proceeded to develop a test system
which allows to verify the functionality of simple embedded
software. In a first trial run, we plan to employ the test system
in our introductory microcontroller course to automatically
verify the correctness of student exam programs. The Micro-
controller lab course is held once every year and is attended
by 120 to 150 undergraduate students. It teaches the basics of
microcontroller programming, such as the usage of timers, a/d
converters, UARTs, and so on in assembler and C language
on simple 8 bit, 16 bit, or 32 bit microcontrollers, and is thus
particularly well suited for a first trial. In the long run, the
tool will be used to automatically verify student programs in
several different embedded systems courses.

This work is part of the FIT-IT project SCDL “Seamless
Campus: Distance Labs”1, which aims to develop a remote

1The “Seamless Campus: Distance Labs” project received support from
the Austrian “FIT-IT Embedded systems” initiative, funded by the Austrian
Ministry for Traffic, Innovation and Technology (BMVIT) and managed by
the Austrian Research Promotion Agency (FFG) under grant 808210. See
http://www.ecs.tuwien.ac.at/Projects/SCDL/ for further information.

teaching concept for embedded systems laboratory courses.
This concept incorporates the required web infrastructure and,
depending on the requirements of the course, customized
learning packages and remote workplaces. The distant goal
of the project is to provide a remote learning environment
that can be used for most of the embedded systems courses at
the Vienna University of Technology. This will enable us to
increase our training capacity and to better support working
or handicapped students.

There are other projects similar to the SCDL project, with
the goal to extend the education in embedded systems in a way
to meet the requirements of the constantly growing embedded
systems industry [1]. Such projects are described in [2], [3],
[4]. In the past years, many systems have been developed
which can test embedded software and hardware in different
ways. For instance, testing by fault-injection is performed by
the tools described in [5] and [6]. The object-oriented scenario-
based test framework shown in [7] places its emphasis upon
test re-usability in case of product families or new product
versions. In contrast to our solution, which performs black-
box functional tests, their approach requires knowledge of the
underlying software structure of the tested system.

Our test system employs a special language to describe
tests and expected results. There are several other projects that
use special languages to test embedded systems. For example,
SystemC is a language that defines abstract models of software
and hardware components, and [8] explores the possibilities of
using SystemC for testing embedded systems.

The system described in [9] is a generic test equipment for
embedded software. It is based on the C++ interpreter CINT
and adopts the C++ language and its features.

Another design of a generic test and maintenance node for
embedded system testing is the subject of [10]. It is built on
the IEEE 1149.1 standard test bus and is designed to provide a
cheap solution for the design-for-test and built-in-test overhead
cost problem.

Our own test system [11] is executed on an ATmega128
microcontroller and is programmed and controlled via a Linux
host computer. The basic idea of our system is to supply
the tested target system with input signals on its I/O pins
and to evaluate its responses in order to compare them with
predefined patterns. Hence, we do black-box tests only and
are mainly interested in the timing of the response signals.

48



The tests and expected results are defined in a special meta-
language, which in practice allows any type of program be-
havior to be tested. The test system performs and evaluates the
tests automatically and provides reports to a human operator
on a local or remote computer. New tests can easily be loaded
to the system and executed.

Compared to the other works cited above, our approach
corresponds well to the goals of an embedded software test
system for the education. In contrast, [7], [9] are well suited
for testing high-level functionalities and expect high-level
communication of some kind in order to perform tests, and
[8] is based on abstract modeling.

In the following paper, we first give an overview of our
test system in Section II, then proceed to describe the system
implementation in more detail in Section III. Section IV
shows the system in action with a small example, Section V
discusses the usefulness of the system, and Section VI lists
some possible extensions. Section VII concludes the paper.

II. TEST SYSTEM OVERVIEW

Resources for undergraduate studies are rather limited – in
obligatory courses, one or two faculty members have to handle
up to 150 students, supported only by about ten tutors. Yet,
embedded systems programming skills are best conveyed by
letting students program a lot, so many such student programs
have to be evaluated. In the Microcontroller laboratory course
that will be used for a trial run, for example, students have
to solve about 10-15 programming exercises during the term,
may voluntarily submit up to another 15 programs to improve
their grade, and additionally have to attend exams. The course
offers three practical exams, and students need to do at least
one of these exams to pass, but may also come to all three
exams to further improve their grade. On the average, about
120 students attend these exams. Each exam consists of two
simple programming tasks which the students have to solve in
the given time. Students work on the hardware during these
exams, so they can try out their solutions and debug their
programs. Whenever a student believes he or she is finished,
(s)he can submit the solution.

In our experience, much of the time spent per student in
undergraduate embedded programming courses is invested into
correcting homeworks and exams, so it makes sense to look
into means of automating this process. Since our undergrad-
uate courses generally tend to use simple exercises to teach
the basic concepts, automatically verifying the correctness of
programs appeared to be an achievable goal.

We wanted our test system to be versatile and to be useful to
a wide variety of courses, ranging from FPGA programming
over different microcontrollers to industrial automation with
SPS hardware. So simulators or code instrumentation were no
viable options. Instead, we focus on the interface of the control
unit to the hardware, in a microcontroller’s case its I/O pins,
and use black-box tests to verify program functionality and
timing. Of course, these tests have their limitations, but they
are the most flexible solution as far as the supported target
system hardware is concerned.

Our test hardware consists of the test system itself, the tested
board, which we will call the target system in the remainder
of the paper, the host computer, and the connections between
them. The whole structure is shown in Figure 1.

Fig. 1. Test system hardware and connections

Currently, the test system is a universal ATmega128 board,
which was developed in the Department of Computer Engi-
neering at Vienna University of Technology. In addition to
the microcontroller, a digital to analog converter is used in
order to extend the functionality of the tests and to support
analog test signals. There are four types of signals that can be
connected to the target system board: Digital signals, analog
signals, RS-232, and the TWI (I2C) interface.

The ATmega128 microcontroller executes a C program,
the interpreter, whose main function is the interpretation and
execution of the actual test program instructions, which are
written in a special meta-language. The interpreter is also
responsible for the communication with the host computer and
the loading of new tests. Note that due to the interpreter, the
test program itself is system independent. It can be executed
on any hardware that provides the interpreter. So although we
are currently using the ATmega128, we could easily change
the system by porting the interpreter.

Two software tools are located on the host computer: The
meta-language translator, which translates test descriptions
into “executable” code, and the mc prog programmer tool,
which can download the tests to the test system and manipulate
them. The results from the test evaluation as well as all
messages are received at the host computer via the standard
serial port in text format.

The language developed to describe the test behavior is
referred to as “meta-language”. It is an assembler-type lan-
guage whose purpose it is to facilitate the writing of test
programs and to make them more understandable. It offers
a set of instructions including arithmetical and logical opera-
tions, memory manipulations, compare and jump instructions,
time measurement, analog and digital signals I/O, TWI and
UART communication interfaces, and test control instructions.
Currently, the meta-language is the top-level interface to the

49



test system.

III. IMPLEMENTATION

A. Hardware

As we already mentioned, the test system is implemented
on a 5V Atmel ATmega128 microcontroller, which is driven
by a 16 MHz clock. An external digital to analog converter,
the DAC6574 of Texas Instruments, is connected via a TWI
interface. Figure 2 shows a block schematic of the test system
hardware and its available connections.

Fig. 2. Test system block schematic

32 digital inputs and outputs are available for the digital
signals. Additionally, up to 14 other pins could be used for
digital signals if their primary functions are not required.
These are the analog inputs, the two UART interfaces, and
the TWI interface. However, in order to prevent or at least
minimize changes to the connections between the test system
and the target system, it is recommended that the special
function pins not be used for digital I/O.

In addition to the digital I/O, the ATmega128 has 8 analog
input pins with 10 bit resolution. A resolution of 8 bit is also
supported by the test system. The external d/a converter is
controlled via the TWI (I2C) serial bus of the ATmega128 and
provides 4 analog outputs with 10 bit resolution. Again, an 8
bit resolution is supported as well. More converters could be
attached to the bus as necessary, and the test system currently
supports two DACs and thus 8 analog outputs. Note that the
TWI interface can also be used to test TWI code on the target
system, independently of the function of the DAC module.

One of the two UART interfaces of the test system is used
for communication with the host computer. Over this interface,
the user can control the tests, and data can be sent back to the
host. The second UART interface can be used to test UART
code running on the target system.

B. Connections

Our test system can dynamically assign the functionality
of a pin. So if, for example, a certain pin PB0 of the target
system is used to output a PWM signal in one test and utilized
as an input from a switch in another, the test system can

handle this change in functionality without requiring a change
in connections. Hence, it is of no particular importance how
the digital I/O pins of the target system are connected to the
test system.

There could be one problem when connecting the test
system to the target system, and this pertains to the analog
pins of the target system, which may either be used as digital
I/O or as analog I/O. In the case of digital I/O, they should be
connected to digital I/O pins of the test system. If the target
requires analog inputs, however, the pins must be connected
to the outputs of the external d/a converter. Different tests may
entail different functionality of these pins, thus necessitating
a change in the connections.

In this version of the test system we do not have any
built-in solution for this problem, so currently the user has to
reconnect the pins if the change in functionality is required. In
a future version, we will solve this problem with an external
multiplexer, which can of course in turn be controlled by the
test system, see Figure 3. This technique allows to dynamically
switch between testing analog input functionality and digital
I/O (or analog output). Of course, it requires one more pin
to control the multiplexer, so it might be sensible to control
several analog inputs/outputs of the test system simultaneously
if the extra pins cannot be afforded.

Fig. 3. Connecting more than one test signal

Note that in most cases the problem will not occur anyway,
since normally the connection between hardware and the
control unit are fixed, so the pin functionalities will remain
the same over all exercises and exam tasks that use this
hardware. For courses that do not use such statically assigned
connections, it may still be feasible to formulate program
specifications that keep these problematic pins fixed. So this
problem does not pose much of a limitation on the test system
in its current form, and a couple of such multiplexers will be
sufficient to support the few pins that for whatever reasons
must remain flexible.

Another aspect we do not currently address is the problem
of different power supplies for target and test system. If the
target system happens to work with different voltage levels,

50



level converters must be employed to bridge the gap between
the target and the 5V levels of the test system.

C. Software

The software of the test systems consists of the translator
tool and the programmer tool on the host, and the interpreter
on the test system itself, see Figure 4.

Fig. 4. Software structure of the test system

The test description is written in the meta-language and
is translated to a test program that can be executed by
the interpreter on the test system. The programmer tool is
responsible for uploading the test program to the test system,
and for controlling the tests.

The test program itself consists of one or more phases,
which can be individually controlled by the programmer. Each
phase tests a particular aspect of the target program. Among
the things that can be tested are the timing of signals, timing
relations between two signals, signal states, or analog outputs.
To perform the tests, the test system can generate diverse
stimuli ranging from simple digital or analog signals over
changing analog values to more complex actions like UART
communication.

1) Meta-language and Translator: The meta-language is a
full image of the instructions implemented on the test system,
so it resembles an assembler language with an emphasis on the
functionality required for the tests. Additionally, some higher-
level constructs are implemented. Contrary to [9], our meta-
language is built entirely on the test functionality and not on an
existing programming language. It is also not object-oriented
as are [7] and [9].

Each test description can contain up to three sections.
The most commonly used section is the #PROGRAM part,
which contains the sequence of instructions which form a
test program. #VARIABLES contains pairs of addresses and
sequences of values which are to be stored starting at the given

address. The #PHASES section contains one or more groups
of addresses and phase numbers.

Our meta-language also supports labels. Each label points
to the address of the next instruction and does not need to
be previously declared to be used in the code. Labels can for
example be used in instructions which control the program
flow, like jump instructions. It does not matter whether the
instruction expects relative or absolute addresses. Another
application where labels are useful is in the definition and
subsequent call of subroutines.

Definitions can be used to associate a variable name with a
number in the range of 0 to 255. The value of the definition
cannot be changed once assigned, so it only allows the usage
of definitions as constants.

As we have already indicated, our meta-language supports
the definition and use of subroutines. They can be placed on
any address, usually at the end of the test program. Each
subroutine must start with a label and end with the return
instruction. Parameters can be passed only implicitly.

The translator tool is used to transform programs in the
meta-language into a hex-code that is ready to be transferred
to the test system. The translator should not be referred
to as a compiler, because no special high-level language
constructions are translated. One of the basic features that the
translator provides is the transformation of complex instruction
parameters into a tightly packed form, which is thus not a
responsibility of the test developer. The parameters are packed
in spaces of less than 1 byte, so that one parameter byte can
contain one, two or more values relevant to the instruction.

2) Programmer Tool: The mc prog programmer tool re-
alizes the communication between the host PC and the test
system. It can download test programs or variable sets to the
system, and can start or stop a test. It accepts a hex-file as
input. The hex-file consists of hex-numbers as they are to
be uploaded into the memory of the test system, and of the
directives (#PROGRAM , #VARIABLES , #PHASES ) which tell
the programmer what to do with the data following it. The
hex-file must begin with a directive.

The upload to the test system is done through the serial port
of the host computer.

3) Interpreter: The test system executes an instruction
interpreter which interprets the instructions that describe the
test behavior. All data required by the interpreter, such as the
size of the last uploaded test program and a pointer to the
currently executed instruction, are stored in global variables.
The test description itself is stored in the microcontroller’s
4kB SRAM.

Every test description consists of several instructions. Most
instructions are 2 bytes wide (1 byte for the instruction code, 1
byte for the parameters), with the exception of some extended
instructions, which are 4 bytes in length and represent func-
tionalities which either cannot be coded in two bytes or which
are an extension of the corresponding 2 byte instruction for the
purpose of optimization. Extensions perform a functionality

51



in one instruction which would otherwise take two or more
two-byte instructions. This leads to faster program execution,
because the instruction decoding time is roughly the same as
the instruction execution time.

A set of local variables can be used for the purposes of the
test process. They can be initialized during upload of the test
program. The memory size for the variables is configurable
and is currently set to 512 bytes. Paging is used in order to
allow the addressing of all variables. All instructions which
use 8 bit addresses refer to the active page, paging itself is
controlled by special instructions.

The first 16 variables can also be addressed with a spe-
cial 4-bit addressing mode. This type of addressing is pro-
vided so that the remaining 4 bits in the instruction word
are free for other parameters. For example, the instruction
test_bit 3, 13 (in hex: 0x06 0x3D) tests the 3rd bit
of the variable at address 13 (the 14th variable). The result
is implicitly stored in variable 0. The 16 variables are not
affected by paging, so our example would have the same effect
no matter which page is currently active. This addressing mode
thus provides an easily reachable set of 16 variables and can
be compared to the concept of registers in a microprocessor.
Variable 0 is used as an accumulator, which means that it is
used as an implicit parameter of some instructions or stores
the results of an operation.

A special array contains values of user-defined timeouts.
These timeouts define the test system reaction in case of
instructions which depend on external signals, like for instance
time measurement instructions or instructions that wait for a
bit change. This prevents hang-ups in case of unexpected or
missing signal patterns. We can provide timeouts in the range
of 1 µs up to over a minute.

An important issue is the addressing of the digital and
analog pins of the test system. To this aim, all of the micro-
controller’s registers can be accessed by using the instructions
load_acc_reg and store_acc_reg . The names of all
I/O registers of the microcontroller are defined and can be used
in the test descriptions. Instructions for manipulating separate
bits of a register are also available. Thus, all digital I/O signals
of the ATmega128 can be manipulated through their ports’
registers. The analog I/O pins as well as the special signals
like TWI and UART can be manipulated through special
instructions, depending on the function. Please refer to [11]
for a detailed description.

The test system offers two types of time measurement: Com-
mon blocking mode realized through polling, and input capture
mode, which works in parallel to the test execution. Time
measurement through polling can be performed by every pin
of the ATmega128. It blocks the test program execution until
the measurement is finished or a timeout occurs, so it is for
example not possible to check the timing of two such signals
at the same time. Time measurement through input capture can

only be performed by some pins of the ATmega128, but has
the distinct advantage that the measurement is interrupt driven.
Hence, it is possible to check the timing of two signals at the
same time. In both cases, the time is measured in milliseconds,
microseconds or in processor clock cycles.

The test system can also perform wait loops. Wait loops are
for example useful when a time delay has to be implemented
in the test program, or when the test needs an external event
(signal change) to continue. Note that the value of the waiting
period is stored in a variable and thus does not have to be set
in advance, but can be dynamically computed during the test
execution.

A variant of the wait loop is implemented by the wait-until-
condition instructions. Depending on the parameters, these
instructions wait for a positive or negative edge on a particular
pin. The test execution is blocked until either the bit change
takes place, or until a previously defined timeout occurs.

IV. EXAMPLE

This section shows a practical example in the form of a
simple program executed on an ATmega16 target system. The
program should wait for the press of a button and then start
to generate a PWM signal with a given period and ratio. A
timing diagram of the desired behavior of the tested target
system is shown in Figure 5.

Fig. 5. Expected time behavior of the tested target

The following connections are required between the target
and the test system:

ATmega128 - ATmega16
PA0 - PA0
PB0 - PB0

The positive edge of PA0 is the start condition for the
ATmega16. The output is on PB0. The width of the PWM
signal is 240µs for LOW and 220µs for HIGH. The response
signal on PB0 should be tested with an accuracy of 5µs.

To test the behavior of the target, we must write the test
description using the meta-language. The program consists of
several parts, which are described below.

The test program begins with the #PROGRAM directive,
after which the addresses of some variables are declared. For
instance, var2=2 shows that the name var2 refers to the
variable at address 2.
#PROGRAM
// definitions

52



acc=0 // accumulator
var10=10
var2=2
var6_32=6
var6_32_LW=8

var0_32=6
var0_32_LW=8

pin0=0
low_duration=12
high_duration=4
accuracy=14

The first instructions initialize pins PA0 and PB0, which are
used later on.
begin:

// label; defines start of the program
// INIT
cbi_reg ADDR_DDRB pin0 // PB0 as input
sbi_reg ADDR_PORTB pin0 // PB0 -> pull-up
cbi_reg ADDR_PORTA pin0 // PA0 -> 0
cbi_reg ADDR_DDRA pin0 // PA0 -> output
// initialize timeout
set_timeout 0 ms var10

Then the signal that is expected by the tested target program
is produced, and the test system checks whether the response
has come within the predefined response time. If not, the test
program executes the jump instruction and outputs an error
message.
// START
// apply positive edge on PA0
sbi_reg ADDR_PORTA 0 // sbi PA0
wait_us_imm 50 // wait for about 50us
// (response time)

// test for response
load_acc_reg ADDR_PINB
test_bit_var 0 acc // test bit 0 of acc
if0_var acc // no response
jump_rel_imm error_no_response

In the next section, the duration of the low pulse is
measured. The first negative edge starts an internal counter
and the measured value is obtained with the next positive
edge. The measure_pulse_width instruction provides a
resolution of the ATmega128 clock cycle. Two possible errors
are checked here: Whether a timeout has occurred during
the measurement, or whether the measured value does not
match the requirements within the bounds set by the desired
measurement accuracy. In case of an error a corresponding
jump is performed.
// MEASURE duration of the LOW pulse
use_timeout 0 // define use of timeout
// pulse width in us, 0=LOW pulse, 1=one pulse, on
// pin0; store into var6_32 (32 bits), of IO port PINB
measure_pulse_width us 0 1 pin0 var6_32 ADDR_PINB
// CHECK whether timeout has occurred
if_flags flag_timeout
jump_rel_imm error_timeout
memory_transfer 2 0 0 var2 var6_32_LW

// save measured time in var2
operation_var16_var sub var6_32_LW low_duration

// var6_32_LW -= low_duration
comp_var16 var6_32_LW accuracy

// compare difference to the stored accuracy
// CHECK whether the difference is greater than the
// accuracy
if_flags >
jump_rel_imm error_low

Similar instructions are used to measure the duration of
the high pulse. If the test has been successful, no jump has

been performed and the next section is executed. It outputs a
message to the computer and terminates the test.
// TESTING DONE! EVALUATE AND PRINT RESULTS

// PROGRAM TERMINATED WITH SUCCESS
sbi_reg ADDR_PORTA 0 // turn off PA0
pc_printstr 0x80 // accuracy=+-
pc_printdec16 accuracy
pc_printstr 0x90 // us
pc_printstr 0x60 // new line
stop_test 0 1 // if here - test success

Now all that is left is the reaction for all error cases. Each
one begins with a label and ends with a termination of the
test. User messages are passed as well.
// PROGRAM TERMINATED WITH ERROR
error_low:
sbi_reg ADDR_PORTA 0 // turn off PA0
pc_printstr 0x10 // message "LOW pulse duration="
pc_printdec16 var2 // print duration value
pc_printstr 0x60 // new line
pc_printstr 0x50 // message must value=
pc_printdec16 low_duration
pc_printstr 0x60 // new line
pc_printstr 0x80 // message accuracy=+-
pc_printdec16 accuracy
pc_printstr 0x90 // message us
pc_printstr 0x60 // new line
stop_test 0 0 // measured time not ok or timeout

error_high: // similar to error_low

error_timeout:
sbi_reg ADDR_PORTA 0 // turn off PA0
pc_printstr 0x70 // message timeout
pc_printstr 0x60 // new line
stop_test 0 0 // measured time not ok or timeout

error_no_response:
sbi_reg ADDR_PORTA 0 // turn off PA0
pc_printstr 0x93 // message no response
pc_printstr 0x60 // new line
stop_test 0 0 // measured time not ok or timeout
// PROGRAM TERMINATED WITH ERROR

This concludes the program part of the test description. The
next section contains no instructions, but defines initial values
for the program variables, as well as the user messages. After
each #VARIABLES directive, we place first an address and
then constants that should be stored at this location. This is
done more than once, since each message begins at a different
location.
// UPLOAD PREDEFINED CONSTANTS
#VARIABLES
0x0000 // start @ address 0

0 0 0 0
0 220 // high_duration must value
0 0 0 0
0 10 // var10 contains timeout
0 240 // low_duration must value
0 5 // accuracy

#VARIABLES
0x0010 // start @ address 0x10
’L’ ’O’ ’W’ 32 ’p’ ’u’ ’l’ ’s’ ’e’ 32

’d’ ’u’ ’r’ ’a’ ’t’ ’i’ ’o’ ’n’ ’=’ 0

#VARIABLES
0x0050 // start @ address 0x50
’m’ ’u’ ’s’ ’t’ 32 ’v’ ’a’ ’l’ ’u’ ’e’ ’=’ 0

#VARIABLES
0x0060 // start @ address 0x60
13 10 0 // new line

#VARIABLES

53



0x0070 // start @ address 0x70
’t’ ’i’ ’m’ ’e’ ’o’ ’u’ ’t’ ’!’ 0

#VARIABLES
0x0080 // start @ address 0x80
’a’ ’c’ ’c’ ’u’ ’r’ ’a’ ’c’ ’y’ ’=’ ’+’ ’-’ 0

#VARIABLES
0x0090 // start @ address 0x80
’u’ ’s’ 0
’n’ ’o’ 32 ’r’ ’e’ ’s’ ’p’ ’o’ ’n’ ’s’ ’e’ ’!’ 0

// END OF TEST PROGRAM

In our test description, both automatic messages and texts
defined by the test developer are returned via the serial
interface. The following list shows the resulting output on the
host PC in some important cases.

• No response within the predefined response time is rec-
ognized:
STARTING COMPLETE TEST
no response!
TEST FAILED!

• The test is successful, the time properties of the measured
signal meet the predefined expectations, the response time
meets the requirements as well:
STARTING COMPLETE TEST
accuracy=+-5us
TEST OK!

• The low pulse duration is not correct, considering the
predefined accuracy:
STARTING COMPLETE TEST
LOW pulse duration=249
must value=240
accuracy=+-5us
TEST FAILED!

• A timeout is reached while measuring the pulse width.
This can be the case when the pulse is too long or if the
signal does not change at all:
STARTING COMPLETE TEST
timeout!
TEST FAILED!

This test description occupies 146 bytes of the memory of
the test system. Additionally, 16 bytes are used for variables
and constants, and 93 bytes contain the user-defined messages.

Of course, the tool is also capable of processing more
sophisticated tests. By using conditional instructions, logical
operations, and timeouts, various types of state machines
could be implemented and therefore the complexity of the test
scenario is only limited by the memory size.

V. DISCUSSION

The tool should facilitate program submission for both
students and instructors: From the students’ point of view, the
tool allows them to submit (and thus check) their programs at
any time and to get instant feedback. In the case of homework,
this makes remote submissions with feedback possible. During
exams, students can check the correctness of their programs
at any time, without the need to call and wait for a supervisor.
If the instructor desires, the tool can also give feedback on
the nature of problems in case of failed submissions, although
such features should probably be used with care to prevent
students from employing a mindless trial-and-error strategy.

From the instructor’s point of view, the tool saves a lot of
time otherwise spent on manually checking student programs,

which generally is a tedious task. It also eliminates human
error from the verification process, allows to conduct exams
in a distance learning setting, i.e., at a remote location without
qualified supervisors on site, and scales to a large number of
students.

These features are bought with the additional effort neces-
sary to generate automated tests. Here, exam programs reap the
highest benefit from the tool, since they tend to be fairly simple
and thus the correctness tests are easily constructed. As a rule
of thumb, we estimate that the time it takes to write the test
for an exam task is approximately equal to the time it takes to
set up the task description and program its solution. So doing
automated tests roughly doubles the time required to set up the
exam. However, verifying a student solution by hand certainly
takes at least ten times as long as doing it automatically, and
this factor increases with increasing task complexity. Hence,
even a moderate amount of students already makes automated
testing economic. Add to that the time-independent advantages
of no room for errors, getting rid of a tedious labor, and the
advantages for students, and we feel that automated tests are
justified even for smaller student numbers like 15-20 students.

Homework exercises pose more problems since they tend
to be more complex. Furthermore, homework is generally not
only about writing a correct program, but also about writing
a good (well-designed) program. Since the test system does
only a black-box test, it cannot be used to verify whether the
student has employed special features of the target system, like
using the timer to automatically generate a PWM signal, and
it can of course not be used to evaluate higher-level issues
like programming style or efficiency. Still, it does free the
instructors from the rather tedious, uninteresting, and error-
prone task of checking the correctness of a large number
of programs and leaves more time to concentrate on high-
level issues like programming style. Furthermore, the test
system allows students to remotely submit their homework
with instant feedback on the correctness, which will certainly
be appreciated. So here it will certainly be worthwhile to
investigate methods to generate test programs more easily, as
we will elaborate in the next section.

As we have seen in the previous section, the result of a
test is either that the test has completed successfully within
the given constraints, or that an error has occurred. It is the
responsibility of the test programmer to specify what output
message the test system should print in case of errors, so
detailed information about the nature of the failure is possible.
Therefore, the test system can be used both for binary tests
(program works/failed) and for more fine-grained evaluation
and can thus also be used to assign partial credit (e.g., award
k% of the full points if the program has successfully passed
k% of the test).

VI. POSSIBLE EXTENSIONS

As one can already see from the example, the test system
is well capable of handling timing relations. However, setting
up the test description is currently done by implementing a
test program in the meta-language. Although not particularly

54



difficult, it is still time-consuming, so an obvious extension
of the system would be to provide a high-level translator that
can directly take timing diagrams as input and translate them
into an appropriate test description. Such a tool would greatly
facilitate the design of test descriptions. Of course, in case of a
failed test, the system should still be able to tell the user which
part of the test failed. But since we only check the timing of
signals, it should be relatively easy to automatically generate
test cases for all errors that can occur during a test.

As we have mentioned, the test system is intended for
checking both exam programs and homework programs. Exam
programs tend to be relatively simple, so the current memory
space is more than sufficient for our purposes. If more complex
homework is tested, however, it might be necessary to extend
the test system’s SRAM. To allow completely automatic test-
ing of diverse programs, we should also add some multiplexers
for the analog pins to our target hardware.

It might sometimes be interesting not only to test the
external signals, but also to verify internal information like reg-
ister initializations of the target microcontroller. This can for
example be useful to check whether a student has programmed
the PWM generator of the target microcontroller as demanded
in the exercise task, or is simply using a manually tuned
busy-wait loop to achieve the same effect. If such additional
checks are desired, the course instructor has to provide some
additional (target-dependent) code which is linked to the
student code and which verifies register initializations. This
code could then use some free pins of the target system to
communicate its results to our test system, which could in
turn incorporate this additional information into its tests. No
change in the test system is required to use such additional
data provided by the target.

Of course, the meta-language can still be enhanced by
adding complementary functionality to some instructions. For
example, the duty cycle of a digital signal could be measured
in one instruction and thus one would not have to measure
the positive and negative pulse durations separately. Or, we
could add some special types of comparison instructions which
already compare with a certain accuracy. This would be useful
when determining whether a measured time or an analog value
is in the required interval.

VII. CONCLUSION AND FUTURE WORK

The test system described in this paper is intended to
automatically check undergraduate student exam programs
and homework exercises in the area of embedded systems
programming for correctness, that is, in compliance with a
given specification. To this aim, we do a black-box test on the
I/O pins of the target system, for example a microcontroller.
We provide the microcontroller with stimuli, thus simulating
the behavior of hardware input elements like switches, and
check the output responses of the microcontroller in both

time and value domain against the program specification. The
output of the system can be used both for simple binary
grading (passed/failed), but also for assigning partial credit
for partial functionality.

The tool will allow us to increase the cost efficiency of
our teaching activities, since faculty staff is relieved from the
monotonous task of correcting more than hundred program
examples per exam. Additionally, the system enables us to
increase the number of students and to devise courses where
exams can be held at other locations than our own university.
Students benefit from the tool as well, since they can submit
their programs anytime and from any location, can expect fast
and correct verification of their programs, and can also get
feedback in case of errors. Therefore we are planning to try
out this system in our next year’s microcontroller laboratory
course, and in the long run intend to employ the tool in all
undergraduate courses on embedded systems.

The system is currently available as a prototype. We are
now working on enhancements of the basic functionality, most
notably on a good and easy to use interface for developing test
descriptions.

REFERENCES

[1] W. Wolf and J. Madsen, “Embedded systems education for the future,”
Proceedings of the IEEE, vol. 88, no. 1, pp. 23–30, Jan. 2000.

[2] M. W. Mutka and A. Bakic, “Teaching undergraduate computer science
and engineering students techniques for the design and analysis of real-
time applications,” in 28th Annual Frontiers in Education Conference,
vol. 3, Nov. 4–7, 1998, pp. 1079–1084.

[3] B. Haberman and M. Trakhtenbrot, “An undergraduate program in
embedded systems engineering,” in 18th Conference on Software En-
gineering Education and Training), Apr.18–20, 2005, pp. 103–110.

[4] J. Sztipanovits, G. Biswas, K. Frampton, A. Gokhale, L. Howard,
G. Karsai, T. J. Koo, X. Koutsoukos, and D. Schmidt, “Introducing
embedded software and systems education and advanced learning tech-
nology in engineering curriculum,” ACM Transactions of Embedded
Computing Systems, Special Issue on Education, 2005.

[5] A. Benso, P. L. Civera, M. Rebaudengo, and M. S. Reorda, “A low-cost
programmable board for speeding-up fault injection in microprocessor-
based systems,” in Annual Reliability and Maintainability Symposium
(RAMS’99), 1999, pp. 171–177.

[6] A. Sung and B. Choi, “An interaction testing technique between hard-
ware and software in embedded systems,” in 9th Asia Pacific Software
Engineering Conference (APSEC’02), 2002, pp. 457–464.

[7] W.-T. Tsai, Y. Na, R. J. Paul, F. Lu, and A. Saimi, “Adaptive scenario-
based object-oriented test frameworks for testing embedded systems,” in
26th International Computer Software and Applications Conference on
Prolonging Software Life: Development and Redevelopment, 2002, pp.
321–326.

[8] A. Fin, F. Fummi, M. Martignano, and M. Signoretto, “SystemC: A
homogenous environment to test embedded systems,” in International
Conference on Hardware Software Codesign, 2001, pp. 17–22.

[9] H. J. Zainzinger, “Testing embedded systems by using a C++ script
interpreter,” in 11th Asian Test Symposium (ATS’02), 2002, pp. 380–
385.

[10] J. D. Lofgren, “A generic test and maintenance node for embedded
system test,” in IEEE International Test Conference on TEST: The Next
25 Years, 1994, pp. 143–153.

[11] V. Legourski, “Test system for embedded software,” Bachelor Thesis,
Vienna University of Technology, Institute of Computer Engineering,
2005.

55


